Модифікація лемніскати Бернуллі та її практичне застосування
dc.contributor.author | Борисенко, В. Д. | |
dc.contributor.author | Устенко, С. А. | |
dc.contributor.author | Устенко, І. В. | |
dc.contributor.author | Borisenko, V. D. | |
dc.contributor.author | Ustenko, S. A. | |
dc.contributor.author | Ustenko, I. V. | |
dc.date.accessioned | 2021-09-24T11:42:29Z | |
dc.date.available | 2021-09-24T11:42:29Z | |
dc.date.issued | 2020 | |
dc.description | Борисенко, В. Д. Модифікація лемніскати Бернуллі та її практичне застосування = Modification of the Bernoulli's lemniscate and its practical application / В. Д. Борисенко, С. А. Устенко, І. В. Устенко // Вчені записки ТНУ ім. В. І. Вернадського. Сер. Технічні науки. – Київ, 2020. – № 3, т. 31 (70), ч. 1. – С. 1–6. | uk_UA |
dc.description.abstract | Стаття присвячена розробленню методу модифікації лемніскати Бернуллі з метою забезпечення заданих кутів нахилу дотичних у початковій і кінцевій точках ділянки лемніскати, розташованій у ділянці додатних значень абсцис та ординат ортогональної системи координат, а також проведення кривої через проміжну точку. Звичайна лемніската має на початку координат кут нахилу дотичної, рівний 45°. У точці перетину пелюстки лемніскати з віссю абсцис ортогональних координат дотична до неї розташовується перпендикулярно до цієї осі. Для модифікації лемніскати введені два параметри, один із яких є степенем кореня, а другий є деяким раціональним додатним або від’ємним числом, але таким, що не призводить до від’ємного значення косинуса, що знаходиться під знаком кореня. Зміна кута нахилу дотичної в початковій точці реалізується введенням під знак кореня додаткової компоненти. Розроблено метод проведення дуги модифікованої лемніскати через точку, задану в площині розташування лемніскати з довільними кутами нахилу дотичних у початковій і кінцевій точках модельованої дуги модифікованої лемніскати. Метод застосовано до розрахунку координат перехідної кривої, яка влаштовується між прямолінійною та круговою ділянками залізничного шляху. Задача розв’язується за умови, що модельована крива буде дотичною до прямолінійної та кругової рейок, а в точці стикування з круговою ділянкою мати в ній кривину, рівну оберненій величині радіуса кола кругової рейки. Наведені результати моделювання тестового прикладу перехідної кривої залізничного шляху, які підтвердили працездатність розробленого методу модифікації лемніскати Бернуллі. Запропонований метод модифікації лемніскати реалізовано у вигляді комп’ютерного коду, який дає змогу, окрім числових результатів, отримувати графічні зображення модельованих кривих на екрані монітора комп’ютера. | uk_UA |
dc.description.abstract1 | The paper is devoted to the development of the method of modification of Bernoulli's lemniscates in order to provide given angles of tangent tangents at the start and end points of the lemniscate's section, located in the region of positive values of the abscissa and ordinates of the Cartesian coordinate system, as well as to draw a curve through an intermediate point. An ordinary lemniscate has a tangent angle of 45° at the origin. At the point of intersection of the petal of the lemniscate with the abscissa axis of Cartesian coordinates, the tangent to it is perpendicular to this axis. To modify lemniscate, two parameters are entered, one of which is the exponent of the root and the other is some rational positive or negative number, but one that does not lead to a negative cosine value under the root sign. Changing the angle of tangent at the starting point is realized by introducing an additional component under the root. The method of drawing a modified lemniscate arc through a point arbitrarily given in the plane of arrangement of the lemniscate with arbitrary angles of tangent at the beginning and end points of the modeled arc of the modified lemniscate is developed. The method is applied to the calculation of the coordinates of the transition curve, which is arranged between the straight and circular sections of the railway track. The problem is solved provided that the modeled curve is tangent to the straight and circular rails, and at a point of joining have a curvature in it equal to the inverse of the radius of the circle of a circular rail. The results of modulation of a test example of a transition curve of the railway track, which confirmed the efficiency of the proposed method of modification of Bernoulli lemniscate. The proposed lemniscate modification method is implemented as a computer code that allows, in addition to numerical results, to obtain graphical representations of simulated curves on a computer monitor screen. | uk_UA |
dc.description.provenance | Submitted by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2021-09-24T11:40:51Z No. of bitstreams: 1 Borisenko 12.pdf: 636272 bytes, checksum: e419f44ac509d4243150d231a406b4ba (MD5) | en |
dc.description.provenance | Approved for entry into archive by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2021-09-24T11:41:23Z (GMT) No. of bitstreams: 1 Borisenko 12.pdf: 636272 bytes, checksum: e419f44ac509d4243150d231a406b4ba (MD5) | en |
dc.description.provenance | Approved for entry into archive by Диндеренко Катерина (kateryna.dynderenko@nuos.edu.ua) on 2021-09-24T11:41:53Z (GMT) No. of bitstreams: 1 Borisenko 12.pdf: 636272 bytes, checksum: e419f44ac509d4243150d231a406b4ba (MD5) | en |
dc.description.provenance | Made available in DSpace on 2021-09-24T11:42:29Z (GMT). No. of bitstreams: 1 Borisenko 12.pdf: 636272 bytes, checksum: e419f44ac509d4243150d231a406b4ba (MD5) | en |
dc.identifier.govdoc | DOI https://doi.org/10.32838/TNU-2663-5941/2020.3-1/01 | |
dc.identifier.issn | 2663-5941(Print) | |
dc.identifier.issn | 2663-595X(Online) | |
dc.identifier.uri | https://eir.nuos.edu.ua/handle/123456789/4435 | |
dc.language.iso | uk | uk_UA |
dc.relation.ispartofseries | 514.18 | uk_UA |
dc.subject | лемніската Бернуллі | uk_UA |
dc.subject | модифікація | uk_UA |
dc.subject | кривина | uk_UA |
dc.subject | перехідна крива | uk_UA |
dc.subject | Bernoulli's lemniscate | uk_UA |
dc.subject | modification | uk_UA |
dc.subject | tangent | uk_UA |
dc.subject | curvature | uk_UA |
dc.subject | transition curve | uk_UA |
dc.title | Модифікація лемніскати Бернуллі та її практичне застосування | uk_UA |
dc.title1 | Modification of the Bernoulli's lemniscate and its practical application | uk_UA |
dc.title2 | 2020 | |
dc.type | Article | uk_UA |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Borisenko 12.pdf
- Розмір:
- 621.36 KB
- Формат:
- Adobe Portable Document Format
- Опис:
- стаття
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 7.05 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: