Статті. Кафедра теплотехніки
Постійне посилання зібрання
Переглянути
Перегляд Статті. Кафедра теплотехніки за Автор "Konovalov, Dmytro"
Зараз показуємо 1 - 6 з 6
Результатів на сторінці
Налаштування сортування
Документ Efficiency Analysis of the Aerothermopressor Application for Intercooling between Compressor Stages by using CFD Model(2021) Kobalava, Halina; Radchenko, Mykola; Konovalov, DmytroДокумент Numerical Simulation of an Aerothermopressor with Incomplete Evaporation for Intercooling of the Gas Turbine Engine(2021) Kobalava, Halina; Konovalov, Dmytro; Radchenko, Roman; Forduy, Serhiy; Maksymov, VitaliyДокумент Optimal Sizing of the Evaporation Chamber in the Low-Flow Aerothermopressor for a Combustion Engine(2021) Konovalov, Dmytro; Kobalava, Halina; Radchenko, Mykola; Sviridov, Vyacheslav; Scurtu, Ionut CristianДокумент Застосування контактного охолодження повітря аеротермопресором в циклі газотурбінної установки(2018) Коновалов, Дмитро Вікторович; Кобалава, Галина Олександрівна; Konovalov, Dmytro; Kobalava, HalinaПроведено аналіз існуючих газотурбінних установок (ГТУ) із застосуванням проміжного охолодження циклового повітря різних фірм-виробників, визначені основні технічні характеристики та головні параметри роботи цих ГТУ. Розглянуто основні шляхи реалізації проміжного охолодження циклового повітря ГТУ, а саме охолодження в поверхневому теплообміннику та контактне охолодження при упорскуванні диспергованої води. Перспективним способом зволоження робочого середовища ГТУ може бути застосування аеротермопресорного апарату, в основу роботи якого покладено процес термогазодинамічної компресії (термопресії). Особливістю цього процесу є підвищення тиску в результаті миттєвого випаровування рідини, що упорскується в повітряний потік, який прискорений до швидкості близько звуковій. При цьому на випаровування води відводиться теплота від газу, в результаті чого знижується його температура. В роботі проведено порівняльний аналіз існуючих та аеротермопресорних технологій для проміжного охолодження повітря ГТУ. Виявлено, що аеротермопресор дозволяє підвищити тиск циклового повітря між ступенями компресора на 2...9%, що призводить до зменшення роботина стиснення в ступенях компресора, а упорскування води, відповідно, до збільшення кількості робочого тіла в циклі на 2...5%, і, як наслідок, збільшується питома потужність на 3...10% та ККД ГТУ на 2...4%.Документ Модель віброкиплячого шару сипких середовищ та її програмна реалізація(2018) Русанов, С. А.; Луняка, К. В.; Коновалов, Д. В.; Андрєєва, Н. Б.; Rusanov, Serhii; Lunyaka, Klara; Konovalov, Dmytro; Andrieieva, NataliiaУ статті представлена математична модель процесу віброкипіння, яка з єдиних позицій описує структуру й поведінку віброкиплячого шару в різних умовах, дозволяє спрогнозувати поведінку віброкиплячого шару в цілому для широкого спектру впливаючих чинників: фізичних властивостей сипкого матеріалу і газового середовища, геометрії робочого органу, параметрів вібрації, особливостей взаємодії фаз між собою і з вантажонесучими поверхнями. Одержана модель дозволяє автоматизувати обчислення з використанням мінімального набору вхідних даних. Одержані рівняння, які описують поведінку віброкиплячого шару як суцільного середовища з особливою реологією, в якій за рахунок підведеної зовнішньої вібрації розповсюджуються нелінійні хвилі деформації з періодичними змінами щільного і розпушеного стану. Створена система автоматизованого моделювання поведінки віброкиплячих шарів "Віброслой", яка дозволяє провести моделювання поведінки віброкиплячого шару сипкого матеріалу з урахуванням фізичних параметрів середовища й газової фази, параметрів вібрації, особливостей фільтрації газу і властивостей робочих органів для ефективного проектування устаткування з віброкиплячим шаром. Проведені тестові моделювання одиничного підкидання шару сипкого матеріалу, визначення швидкостей течії шару на вібруючих поверхнях із зіставленням з експериментальними даними. Показана можливість прогнозування параметрів сталих (стаціонарних течій) віброкиплячого шару на протяжних вібруючих поверхнях.Документ Чисельне моделювання проточної частини маловитратного аеротермопресора для проміжного охолодження циклового повітря газотурбінного двигуна(2019) Коновалов, Дмитро Вікторович; Кобалава, Галина Олександрівна; Konovalov, Dmytro; Kobalava, HalinaВикористання проміжного охолодження циклового повітря, в процесі стиснення в компресорі, сприятливо позначається на ресурсі газотурбінної установки (ГТУ) та на підвищенні її потужності, без зниження ресурсу роботи. В роботі проведено аналіз перспективного способу охолодження циклового повітря ГТУ, а саме контактного охолодження із застосуванням аеротермопресора, який представляє собою двофазовий струминний апарат, в якому за рахунок відведення теплоти від повітряного потоку відбувається підвищення тиску повітря та його охолодження. Основною проблемою при розробці аеротермопресора є визначення геометричних характеристик проточної частини апарата та системи упорскування рідини, які б дозволили забезпечити ефективне його застосування, з точки зору підвищення тиску і розпилення рідини. Для визначення основних характеристик аеротермопресора системи охолодження циклового повітря ГТУ було проведено аналіз роботи моделей апарату за допомогою комп'ютерного CFD-моделювання в програмному комплексі ANSYS Fluent. Була визначена методика розрахунку, обрана модель турбулентності, проведено розрахунок з урахуванням збіжності результатів та здійснена обробка та візуалізація вихідних даних в постпроцесорі, у вигляді графіків та полів. На основі цього було розроблено конструкцію аеротермопресора для ГТУ марки WR-21 фірми Rolls Royce. На першому етапі дослідження було проведено моделювання «сухого» аеротермопресора (без упорскування води в камеру випаровування). Було встановлено, що зниження тиску повітряного потоку внаслідок втрат на тертя складає близько 5 %. На другому етапі дослідження було проведено моделювання аеротермопресора з упорскуванням води в проточну частину (на вході в камеру випаровування). В результаті термогазодинамічної компресії підвищення повного тиску циклового повітря на виході з аеротермопресора склало 3,1 %, а температура охолоджуваного повітря знизилась на 280 К. Для забезпечення ефективного стиснення повітря в компресорі ГТУ було розглянуто неповне випаровування води в аеротермопресорі, що дало можливість отримати більш дрібнодисперсний потік на виході з дифузора, при цьому середній діаметр краплі води зменшився до 2,5 мкм.